221 CHLORPYRIFOS

Collaborative Study

Full Scale Collaborative Study for the

Determination of Chlorpyrifos in TC and EC formulation by HPLC

Report to CIPAC

by

Shenyang SYRICI Testing Co., Ltd.

No.8, Shenliao East Road,

Tiexi District Shenyang 110021, P.R. China

May 2021

Content

1. P/	ARTICIPANTS	
2. AC	CTIVE INGREDIENT: GENERAL INFORMATION	5
3. SA	AMPLES	6
4. MI	ETHOD	6
4.1	Scope	6
4.2	Principle	6
4.3	Procedure	6
5. RE	EMARKS OF THE PARTICIPANTS	7
6. E\	ALUATION AND DISCUSSION	9
6.1	Data Review	9
6.2	Determination of Chlorpyrifos	9

7. CONCLUSIONS

1. Participants

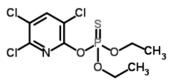
In September 2020, Information Sheet No. 327 was sent out by the CIPAC Secretary inviting members to participate in a large-scale collaborative study on the determination of Chlorpyrifos in TC and EC formulation by HPLC. 20 laboratories participated in the trial.

By the end of March 2021, all of the 20 selected laboratories provided their results. One participant provided results by Gas Chromatography instead of HPLC. Therefore, the results of the rest 19 participants are presented in the following sections.

Participating laboratories are listed in alphabetical order in the table below whereas lab numbers in the result tables were assigned, chronologically, based upon receipt time of results.

Contact	Lab
Cornel Grecu	Alchimex SA - Quality Control Lab Bucharest-1 Alexandru Constantinescu nr. 63, Romania
Huang Liang	Anhui Fengle Agrochemical Co., Ltd.
	Hefei Circular Economy Demonstration Park, Feidong County, Hefei City, Anhui Province 231600, China
Liu Lihong	Analysis Center of Lier Chemical Co., Ltd
	Lier Chemical Co., Ltd Add.
	Economic and Technical Development Zone, Mianyang Sichuan, China
Hien Nguyen T	Biolytrics Vietnam Co., Ltd. Lab
	No. 15B, Alley 1, Lane 34, Au Co str.,
	Tay Ho dist., Ha Noi, Vietnam
Dr. Michael	Currenta GmbH & Co. OHG - Thio Labor (DOR)
Haustein	41538 Dormagen Gebäude A559, BÜRO 11,5m
	Germany
Ms.Woramon	Department of Medical Sciences (DMSc),
Suriyachan	Bureau of Cosmetics and Hazardous Substances
	Tivanon rd., Muang, Nonthaburi
	11000
Mr. He Zhiyu	Guizhou JAD technology co., Ltd.
	Baijin road No.3491, Baiyun district, Guiyang, P. R. China
Leonardo Bravo	Instituto Colombiano Agropecuario - ICA
	Laboratorio Nacional de Insumos Agricolas - LANIA. C.I Tibaitata,
	Km 14 Vía Bogotá – Mosquera
Dr Claudia Vinke	Labor für Formulierungschemie
	Messeweg 11/12
	D-38104 Braunschweig, Germany

Eva Jacobsen	Lab for Chemistry and Microbiology
	Danish Technological Institute
	Kongsvang Allé 29, DK-8000 Aarhus, Denmark
Volodymyr	Lab of pesticides analytical chemistry of
Mykhaylov	L.I. Medved's Research Center of Preventive Toxicology, Food and Chemical Safety, Ministry of Health, Ukraine
	6, Heroiv Oborony st., Kiev, Ukraine, 03680
Peng Wu	National Center for Pesticide Quality Supervision and Inspection (Beijing),
	Institute for the Control of Agrochemicals,
	Ministry of Agriculture and Rural Affairs , P. R. China
	Address: Maizidian road No.22, Chaoyang district, Beijing, P. R. China
Florentina	National Phytosanitary Lab
Ciotea	National Phytosanitary Authority Voluntari Bvd. No. 11, Voluntari Town, Ilfov County, Romania
Agus Salim	PT Agriculture Construction (AGRICON)
	JI. Siliwangi No. 68 Bogor 16134 West Java, Indonesia
Hou Chunqing	Pesticides Test Lab of Shenyang SYRICI Testing Co., Ltd.
	No.8, Shenliao East Road, Tiexi District Shenyang 110021, P.R. China
Shirish Bondre	Quality Assurance Dept., Gharda Chemicals Ltd.
	D-1/2, MIDC, Lote Parshuram, Taluka Khed
	District: Ratnagari 415722, Maharashtra India
Lynn	Shandong Sino-Agri United Biotechnology Co., Ltd. Testing Center
	NO.28, Sangyuan Road, Jinan City, Shandong, China
Judy	Shandong Binnong Technology Co., Ltd.
	No.518, Yongxin Road, Binbei Town, Binzhou, Shandong, China
Maureen Tian	Test Center of Shandong Weifang Rainbow Chemical Co., Ltd.
	Binhai Economic Development Area, Weifang, Shandong, China
Vanessa Lecocq	Walloon Agricultural Research Centre (CRA-W)
	Batiment Rachel Carson Rue du Bordia,115030 Gembloux Belgique
	Belgium


2. Active Ingredient: General Information

Chemical name: O, O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate(IUPAC)

O, O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate(CA; 2912-88-2)

ISO common name: Chlorpyrifos

CAS-No.: 2921-88-2

Structure:

Molecular mass: 350.6 g/mol

Empirical formula: C₉H₁₁Cl₃NO₃PS

Activity: Insecticide

3. Samples

The following 5 test samples and analytical standard were sent to the participants:

- 1. Chlorpyrifos tech. sample 1 (Chlorpyrifos TC-1, Batch Number: 2020092263)
- 2. Chlorpyrifos tech. sample 2 (Chlorpyrifos TC-2, Batch Number: 2020092161)
- 3. Chlorpyrifos tech. sample 3 (Chlorpyrifos TC-3, Batch Number: 2020092365)
- 4. Chlorpyrifos 40 % EC sample 4 (Chlorpyrifos EC-1, Batch Number: 20200710)
- 5. Chlorpyrifos 40 % EC sample 5 (Chlorpyrifos EC–2, Batch Number: 20200705)

Chlorpyrifos, reference standard (purity 99.2 %w/w)

4. Method

4.1 Scope

The determination of Chlorpyrifos active ingredient content in technical grade material (TC) and EC formulation.

4.2 Principle

Chlorpyrifos is determined by reversed phase high performance liquid chromatography using UV detection at 290 nm and external standardisation.

4.3 Procedure

Each sample was analyzed using four independent determinations. The samples were analyzed on two different days, each day involving duplicate injections of duplicate weights. Both test and reference solutions were freshly prepared on each day. The four injections of each test solution were bracketed by double injections of the calibration solution. The average response factor, used to calculate the amount of Chlorpyrifos in the test solution, was calculated using the injection before and after the test injections.

<mark>Lab</mark>	Instrument	Column	Flow Rate	<mark>Column</mark> Temp. ℃		Injection Volume	Mobile phase
1	Thermo Ultimate 3000	Agilent Extend-C18 5um 250 x 4.6mm	1.0	<mark>30</mark>	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
2	Agilent 1260	ZORBAX SB-C18 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
3	Agilent 1260	TC-C18(2), 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
4	Agilent 1100	Phenomenex Lunar® 5um C18(2) 100Å	<mark>1.2</mark>	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
5	Agilent 1260 Infinity II	Agilent Zorbax Extend-C18 / 5um 250 x 3.0mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
6	Waters , Model Alliance e2695 , Detector 2998	Xterra RP18 with 5um 250 x 4.6mm, 123 oA pore diameter	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
7	SHIMADZU LC-2030C 3D Plus	ZORBAX Extend-C18, 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
8	Agilent 1200 Series	Zorbax Extend- C18, 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
9	Agilent HPLC-DAD 1260 Infinity	Luna C18(2) 100A, 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
10	Shimadzu Nexera XR with SPD-20A	Zorbax Extend C18 5um 250 x 4.6mm with precolumn	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
11	YQ-1-35	Agilent Extend-C18, 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
12	Dionex UltiMate 3000	Agilent - Zorbax Eclipse XDB-C18 , 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)

5. Analytical Condition and Remarks of the Participants

13	Shimadzu 20 AD	Phenomenex Luna C-18, 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
14	Themro, Dionex UltiMate 3000 HPLC	Agilent Extend C18, 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
15	Thermo Scientific Ultimate-3000	Cosmosil C-18, 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
16	Agilent	Agilent Extend-C18, 5um 250 x 4.6mm	1.0	<mark>35</mark>	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
17	Agilent Technologies Pte. Ltd DAD: DEAEK00202/G7117C	WondaSil C18 Superb 5um 250 x 4.6mm	1.0	<mark>35</mark>	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
18	Agilent 1260 Infinity II	Agilent Eclipse XDB-C18, 5um 250 x 4.6mm	1.0	<mark>35</mark>	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
19	Agilent 1100 Series	Agilent Zorbax Extend-C18, 5um 250 x 4.6mm	1.0	25	290	5	Acetonitrile/Water/Glacial acetic acid(820/175/5, v/v/v)
20	GC						

Several participants provided comments about the method performance and also made a note of any deviations from the method:

Lab No.	Comments
Lab 6	The preparation of TC samples is deviated from the method specified by adding only 80
	ml of acetronitrile before being placed in an ultrasonic bath for 5 min, allow to cool at
	ambient temperature and then fill acetronitrile to the mark.
Lab 8	Each TC sample was one cluster in the container. To weight the required amount the
	sample has to be scraped with a spatula. The labeling of the samples was not clearly.
	For identification the charge numbers must be compared (from container and from the
	report).For the Day2-Z sheet the formulae were missing. Sheet Day1-Z was duplicated
	and re-named.
Lab 17	DAY1-Z: The test/reference items were injected into HPLC system on 2021-01-12. The
	data was analyzed on 2021-01-13.
	DAY2-Z: The test/reference items were injected into HPLC system on 2021-01-13. The
	data was analyzed on 2021-01-14.
Lab 18	1 Approximately weigh 50mg of Chlorpyrifos standard respectively into 50ml volumetric
	flask. 2 Approximately weigh containing Chlorpyrifos 50mg of Chlorpyrifos TC or EC into
	50ml volumetric flask.

6. Evaluation and Discussion

6.1 Data Review

The data obtained from each Lab was visually reviewed to determine if there were any significant chromatography differences, from what was expected, which might affect the analytical results. In summary it can be stated that the method deviations, noted by the participants, were deemed not to affect the analytical results significantly and therefore all data sets from 19 participating laboratories were included within the statistical assessment, except the one using GC method.

6.2 Determination of Chlorpyrifos

The statistical evaluation of the data was accomplished following the "Guidelines for CIPAC Collaborative Study Procedures for Assessment of Performance of Analytical Methods", according to DIN ISO 5725. The testing for outliers/stragglers of the Lab mean values were performed according to Grubbs test on a 1%/5% significance level, respectively.

In the tables 1-3 and figures 1-5, respectively, 19 laboratories are reported. Lab 9 three times was identified as outliers of TC-1, TC-2 and TC-3 according to Grubbs test. In the tables 4-6 and figures 6-8, TC-1, TC-2 and TC-3 of 18 laboratories(without lab 9) are reported. Lab 6 one time was identified as outlier of TC-3. In the tables 7-9 and figures 9, TC-3 of 17 laboratories (without lab 9 and 6) are reported. No outliers or stragglers are included. The Horwitz Ratio (HorRat) was found within the desired range (≥ 0.3 but ≤ 1.0).

All results are given in g/kg

Table 1 Results of 19 labs

	Chlorpyrifos TC-1		Chlorpyrifos TC-2		Chlorpyrifos TC-3		Chlorpyrifos EC-1		Chlorpyrifos EC-2	
	Day 1	Day 2								
Lab 1	977.9	975.3	977.2	980.6	979.9	978.1	406.3	406.7	405.1	406.5
Lab 2	978.4	977.0	979.0	978.2	979.6	980.2	403.6	403.2	403.2	402.8
Lab 3	975.4	977.4	975.9	978.3	979.1	977.9	404.6	403.7	403.4	403.2
Lab 4	976.7	976.4	979.3	977.4	979.1	971.2	400.6	406.8	400.8	402.7
Lab 5	982.8	981.0	978.9	978.0	984.0	975.2	407.7	407.9	407.0	407.6
Lab 6	963.4	973.6	960.6	971.5	953.4	962.0	397.8	397.4	398.3	399.2
Lab 7	982.4	985.6	982.8	984.8	982.1	983.8	406.4	406.7	405.5	405.8
Lab 8	978.9	973.3	983.2	972.7	983.0	966.2	403.3	398.1	402.4	399.9
Lab 9	935.2	954.6	924.2	963.5	936.5	945.3	395.6	400.8	395.7	400.0

Lab 10	985.7	980.1	989.3	977.3	991.2	977.8	408.5	405.8	410.5	407.4
Lab 11	971.5	971.3	975.4	974.8	980.3	980.8	404.3	405.7	401.3	402.7
Lab 12	976.8	976.1	979.4	979.6	981.6	981.9	402.9	403.3	403.4	403.9
Lab 13	977.5	973.7	979.8	974.8	969.3	970.5	403.2	399.5	399.3	398.6
Lab 14	979.9	980.7	978.6	980.1	977.7	976.5	405.0	405.6	406.0	405.3
Lab 15	977.2	977.5	980.4	975.7	974.4	977.4	406.6	407.1	405.7	410.2
Lab 16	980.0	977.6	978.1	976.1	980.2	979.6	405.8	404.2	406.3	404.2
Lab 17	983.8	978.2	982.6	984.0	983.7	979.2	405.5	403.5	405.3	402.5
Lab 18	981.4	978.1	982.7	981.9	980.6	982.1	403.8	404.6	405.4	405.5
Lab 19	982.6	978.6	962.3	970.3	973.2	965.0	404.1	406.1	404.0	405.7

Table 2 Mean values

	Chlorpyrifos TC-1	Chlorpyrifos TC-2	Chlorpyrifos TC-3	Chlorpyrifos EC-1	Chlorpyrifos EC-2
Lab 1	976.6	978.9	979.0	406.5	405.8
Lab 2	977.7	978.6	979.9	403.4	403.0
Lab 3	976.4	977.1	978.5	404.2	403.3
Lab 4	976.5	978.3	975.1	403.7	401.8
Lab 5	981.9	978.4	979.6	407.8	407.3
Lab 6	968.5	966.0	957.7	397.6	398.7
Lab 7	984.0	983.8	983.0	406.6	405.7
Lab 8	976.1	978.0	974.6	400.7	401.2
Lab 9	944.9	943.9	940.9	398.2	397.8
Lab 10	982.9	983.3	984.5	407.1	408.9
Lab 11	971.4	975.1	980.6	405.0	402.0
Lab 12	976.5	979.5	981.8	403.1	403.6
Lab 13	975.6	977.3	969.9	401.4	398.9
Lab 14	980.3	979.4	977.1	405.3	405.7
Lab 15	977.4	978.1	975.9	406.9	408.0
Lab 16	978.8	977.1	979.9	405.0	405.2
Lab 17	981.0	983.3	981.5	404.5	403.9
Lab 18	979.8	982.3	981.4	404.2	405.5
Lab 19	980.6	966.3	969.1	405.1	404.9

Table 3 Summary of the statistical evaluation (19 Labs included)

	Chlorpyrifos TC-1	Chlorpyrifos TC-2	Chlorpyrifos TC-3	Chlorpyrifos EC-1	Chlorpyrifos EC-2
x _m [g/kg]	976.15	976.02	974.89	404.01	403.75
x _m [% w/w]	97.62	97.60	97.49	40.40	40.38
L	19	19	19	19	19
Sr	4.31	6.68	4.82	2.06	1.57
S _R	9.24	10.79	11.30	3.35	3.39
r	12.07	18.70	13.51	5.76	4.38
R	25.86	30.22	31.65	9.37	9.50
RSD _R	0.95	1.11	1.16	0.83	0.84
RSD _R (Hor)	1.42	1.42	1.42	1.62	1.62
HorRat	0.67	0.78	0.82	0.51	0.52

xm = total mean value

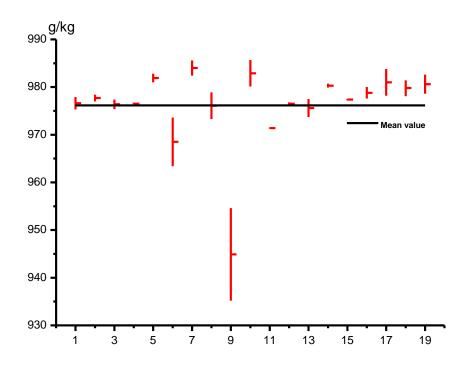
L = number of laboratories

sr = repeatability standard deviation

s_R = reproducibility standard deviation

r = repeatability limit

R = reproducibility limit


RSD_R = relative standard deviation of reproducibility

 $RSD_{R (Hor)} = Horwitz Value according to Horwitz equation$

HorRat = Horwitz Ratio (RSD_R / RSD_{R (Hor)})

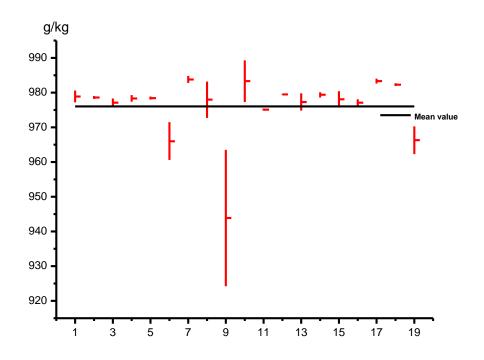
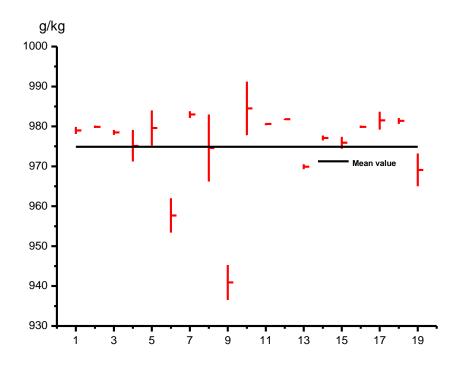
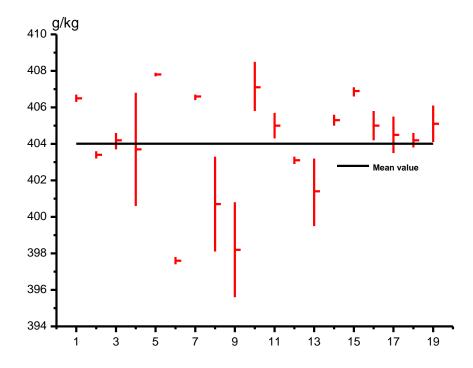
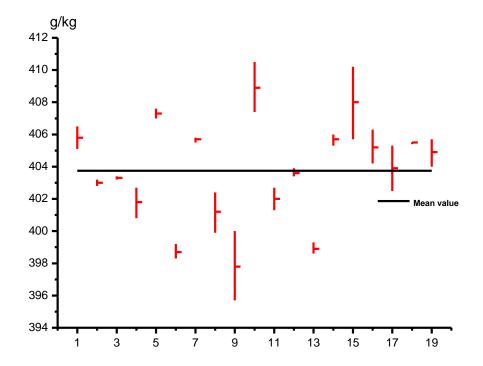

19 participants:

Fig. 1 Chlorpyrifos tech. sample - 1 (19 labs included)



Mean value:	976.15 g/kg			
S _r :	4.31			
S _R :	9.24			
RSD _R :	0.95			
RSD _{R (Hor)} :	1.42			
HorRat:	0.67			
Outlier (Grubbs): lab 9				


Fig. 2 Chlorpyrifos tech. sample - 2 (19 labs included)


Mean value:	976.02 g/kg			
S _r :	6.68			
S _R :	10.79			
RSD _R :	1.11			
RSD _R (Hor) :	1.42			
HorRat:	0.78			
Outlier (Grubbs): lab 9				

Mean value:	974.89 g/kg	
S _r :	4.82	
S _R :	11.30	
RSD _R :	1.16	
RSD _R (Hor) :	1.42	
HorRat:	0.82	
Outlier (Grubbs): lab 9		

Mean value:	404.01 g/kg		
S _r :	2.06		
S _R :	3.35		
RSD _R :	0.83		
RSD _R (Hor) :	1.62		
HorRat:	0.51		
Outlier (Grubbs): none			
Straggler (Grubbs): none			

Mean value:	403.75 g/kg		
S _r :	1.57		
S _R :	3.39		
RSD _R :	0.84		
RSD _R (Hor) :	1.62		
HorRat:	0.52		
Outlier (Grubbs): none			

Straggler (Grubbs): none

Table 4 Results (without lab 9)

		rpyrifos °C-1		rpyrifos C-2	•	oyrifos C-3
	Day 1	Day 2	Day 1	Day 2	Day 1	Day 2
Lab 1	977.9	975.3	977.2	980.6	979.9	978.1
Lab 2	978.4	977.0	979.0	978.2	979.6	980.2
Lab 3	975.4	977.4	975.9	978.3	979.1	977.9
Lab 4	976.7	976.4	979.3	977.4	979.1	971.2
Lab 5	982.8	981.0	978.9	978.0	984.0	975.2
Lab 6	963.4	973.6	960.6	971.5	953.4	962.0

Lab 7	982.4	985.6	982.8	984.8	982.1	983.8
Lab 8	978.9	973.3	983.2	972.7	983.0	966.2
Lab 10	985.7	980.1	989.3	977.3	991.2	977.8
Lab 11	971.5	971.3	975.4	974.8	980.3	980.8
Lab 12	976.8	976.1	979.4	979.6	981.6	981.9
Lab 13	977.5	973.7	979.8	974.8	969.3	970.5
Lab 14	979.9	980.7	978.6	980.1	977.7	976.5
Lab 15	977.2	977.5	980.4	975.7	974.4	977.4
Lab 16	980.0	977.6	978.1	976.1	980.2	979.6
Lab 17	983.8	978.2	982.6	984.0	983.7	979.2
Lab 18	981.4	978.1	982.7	981.9	980.6	982.1
Lab 19	982.6	978.6	962.3	970.3	973.2	965.0

Table 5 Mean values (without lab 9)

	Chlorpyrifos TC-1	Chlorpyrifos TC-2	Chlorpyrifos TC-3
Lab 1	976.6	978.9	979.0
Lab 2	977.7	978.6	979.9
Lab 3	976.4	977.1	978.5
Lab 4	976.5	978.3	975.1
Lab 5	981.9	978.4	979.6
Lab 6	968.5	966.0	957.7
Lab 7	984.0	983.8	983.0
Lab 8	976.1	978.0	974.6
Lab 10	982.9	983.3	984.5
Lab 11	971.4	975.1	980.6
Lab 12	976.5	979.5	981.8
Lab 13	975.6	977.3	969.9
Lab 14	980.3	979.4	977.1
Lab 15	977.4	978.1	975.9
Lab 16	978.8	977.1	979.9
Lab 17	981.0	983.3	981.5
Lab 18	979.8	982.3	981.4
Lab 19	980.6	966.3	969.1

Table 6 Summary of the statistical evaluation (without lab 9)

	Chlorpyrifos TC-1	Chlorpyrifos TC-2	Chlorpyrifos TC-3
x _m [g/kg]	977.89	977.81	974.89
x _m [% w/w]	97.79	97.78	97.68
L	18	18	18
Sr	3.56	4.10	4.66
S _R	4.94	6.03	7.83
r	9.96	11.47	13.06
R	13.83	16.88	21.93
RSD _R	0.51	0.62	0.80
RSD _R (Hor)	1.42	1.42	1.42
HorRat	0.36	0.43	0.57

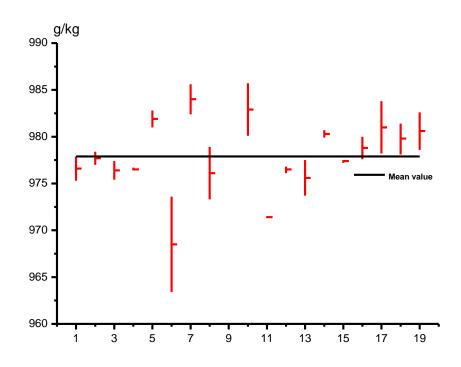
xm = total mean value

L = number of laboratories

sr = repeatability standard deviation

 s_R = reproducibility standard deviation

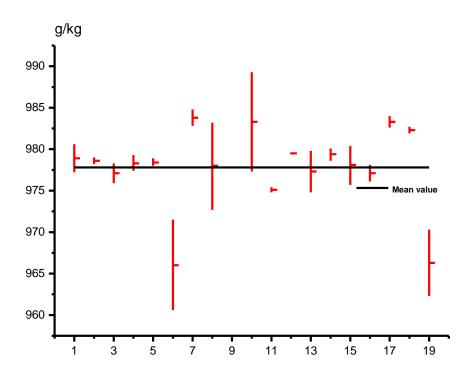
r = repeatability limit


R = reproducibility limit

RSD_R = relative standard deviation of reproducibility

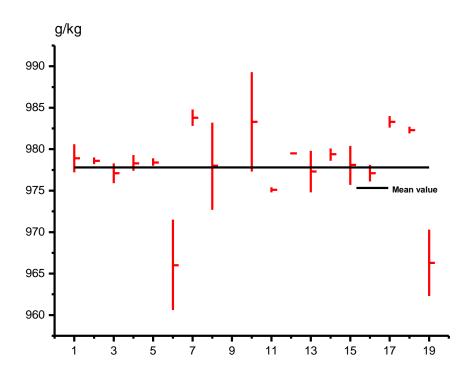
RSD_{R (Hor)} = Horwitz Value according to Horwitz equation

HorRat = Horwitz Ratio (RSDR / RSDR (Hor))


Fig. 6 Chlorpyrifos tech. sample - 1 (without lab 9)

Mean value:	977.89 g/kg	
S _r :	3.56	
S _R :	4.94	
RSD _R :	0.51	
RSD _{R (Hor)} :	1.42	
HorRat: 0.36		
Outlier (Grubbs): none		

Straggler (Grubbs): none


Fig. 7 Chlorpyrifos tech. sample - 2 (without lab 9)

Mean value:	977.81 g/kg
S _r :	4.10
S _R :	6.03
RSD _R :	0.62
RSD _R (Hor) :	1.42
HorRat:	0.43

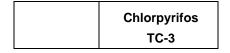
Outlier (Grubbs): none Straggler (Grubbs): none

Fig. 8 Chlorpyrifos tech. sample - 3 (without lab 9)

Mean value:	974.89 g/kg
S _r :	4.66
S _R :	7.83
RSD _R :	0.80
RSD _R (Hor) :	1.42
HorRat:	0.57
Outling (Orusha	a), Jah C

Outlier (Grubbs): lab 6

Table 7 Results (without lab 9 and 6)


	Chlorpyrifos TC-3	
	Day 1	Day 2
Lab 1	979.9	978.1
Lab 2	979.6	980.2
Lab 3	979.1	977.9
Lab 4	979.1	971.2
Lab 5	984.0	975.2
Lab 7	982.1	983.8
Lab 8	983.0	966.2
Lab 10	991.2	977.8
Lab 11	980.3	980.8

Lab 12	981.6	981.9
Lab 13	969.3	970.5
Lab 14	977.7	976.5
Lab 15	974.4	977.4
Lab 16	980.2	979.6
Lab 17	983.7	979.2
Lab 18	980.6	982.1
Lab 19	973.2	965.0

Table 8 Mean values(without lab 9 and 6)

	Chlorpyrifos TC-3
Lab 1	979.0
Lab 2	979.9
Lab 3	978.5
Lab 4	975.1
Lab 5	979.6
Lab 7	983.0
Lab 8	974.6
Lab 10	984.5
Lab 11	980.6
Lab 12	981.8
Lab 13	969.9
Lab 14	977.1
Lab 15	975.9
Lab 16	979.9
Lab 17	981.5
Lab 18	981.4
Lab 19	969.1

Table 9 Summary of the statistical evaluation (without lab 9 and 6)

x _m [g/kg]	977.9
x _m [% w/w]	97.79
L	17
Sr	4.58
S _R	6.29
r	12.82
R	17.62
RSD _R	0.64
RSD _R (Hor)	1.42
HorRat	0.45

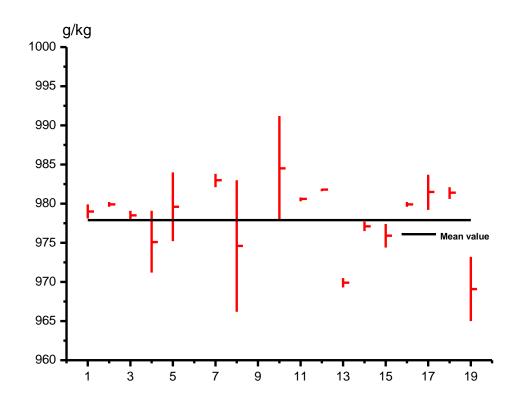
xm = total mean value

L = number of laboratories

sr = repeatability standard deviation

 s_R = reproducibility standard deviation

r = repeatability limit


R = reproducibility limit

RSD_R = relative standard deviation of reproducibility

RSD_{R (Hor)} = Horwitz Value according to Horwitz equation

HorRat = Horwitz Ratio (RSD_R / RSD_R (Hor))

Fig. 9 Chlorpyrifos tech. sample - 3 (without lab 9 and 6)

Mean value:	977.9 g/kg	
S _r :	4.58	
S _R :	6.29	
RSD _R :	0.64	
RSD _R (Hor) :	1.42	
HorRat:	0.45	
Outlier (Grubbs): none		
Straggler (Grubbs): none		

7. Conclusions

A total of 20 laboratories have participated in this full scale collaborative study. And data from 19 participants have been included in the final data statistical. The excluded one used GC method instead of HPLC.

The data presented in the statistical summary show that this method led to HorRat values all within the required range. That is evidence for the fact that the present LC method is acceptable and suitable to produce reproducible results.

SYRICIT consider this method to be suitable for the intended purpose, without further changes, and recommend accepting it as a provisional CIPAC method for the determination of Chlorpyrifos in technical grade material and in EC formulation.